Dynamic Resources Configuration for Coevolutionary Scheduling of Scientific Workflows in Cloud Environment

نویسندگان

  • Alexander A. Visheratin
  • Mikhail Melnik
  • Denis A. Nasonov
چکیده

Modern composite scientific applications, also called scientific work‐ flows, require large processing capacities. Cloud environments provide high performance and flexible infrastructure, which can be easily employed for work‐ flows execution. Since cloud resources are paid in the most cases, there is a need to utilize these resources with maximal efficiency. In this paper we propose dynamic resources coevolutionary genetic algorithm, which extends previously developed coevolutionary genetic algorithm for dynamic cloud environment by changing computational capacities of execution nodes on runtime. This method along with using two types of chromosomes – mapping of tasks on resources and resources configuration – allows to greatly extend the search space of the algo‐ rithm. Experimental results demonstrate that developed algorithm is able to generate solutions better than other scheduling algorithms for a variety of scien‐ tific workflows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the palbimm scheduling algorithm for fault tolerance in cloud computing

Cloud computing is the latest technology that involves distributed computation over the Internet. It meets the needs of users through sharing resources and using virtual technology. The workflow user applications refer to a set of tasks to be processed within the cloud environment. Scheduling algorithms have a lot to do with the efficiency of cloud computing environments through selection of su...

متن کامل

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints

One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...

متن کامل

Dynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture

Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...

متن کامل

SHEFT: An Elastic Workflow Scheduling Algorithm for Cloud Computing

Due to the complexity of scientific processes, compute and data intensive scientific workflows are often required to be executed in a distributed high-end computing environment, such as the Cloud. Most existing workflow scheduling algorithms only consider a computing environment in which the number of compute resources is bounded. Resources assigned to a workflow cannot be automatically determi...

متن کامل

Deadline-constrained coevolutionary genetic algorithm for scientific workflow scheduling in cloud computing

Concurrency Computat.: Pract. Exper. 2016; 1–12 Summary The cloud infrastructures provide a suitable environment for the execution of large‐scale scientific workflow application. However, it raises new challenges to efficiently allocate resources for the workflow application and also to meet the user's quality of service requirements. In this paper, we propose an adaptive penalty function for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017